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LE'ITER TO THE EDITOR 

Oscillator representations of the 2~ conformal algebra and 
superalgebra 

B A Kupershmidt 
The University of Tennessee Space Institute, Tullahoma, Tennessee 37388, USA and Center 
for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 

Received 24 September 1985 

Abstract. For the Virasoro algebra and for the Neveu-Schwarz-Ramond (NSR)  super- 
algebra, oscillator representations are found by localising the Miura and the super Miura 
maps from the theory of the Korteweg-de Vries (Kdv) and the super Kdv equations, 
respectively. 

The history of science is full of unexpected links between seemingly unconnected 
theories. One of the most illustrious examples is provided by the dual resonance theory 
and the theory of Kac-Moody Lie algebras. Both were formulated in 1968 (Veneziano 
1968, Kac 1968, Moody 1968), both have independently undergone spectacular 
developments and they have cross-fertilised each other ever since 1980 when a deep 
similarity between their formal structures was found (Frenkel and Kac 1980). 

A year later in 1981 (Drinfel'd and Sokolov 1981), Kac-Moody algebras were found 
to serve as one of the underlying structures of another important subject: the theory 
of infinite-dimensional integrable systems, proposed in 1967 (Gardner et a1 1967), one 
year earlier than the above two theories. It would be, then, not unreasonable to suspect 
the existence of a hidden connection between integrable systems and dual models, 
and an indication that such a connection does indeed exist is the appearance of the 
Virasoro algebra both in dual models (Schwarz 1973) and in the description of the 
Korteweg-de Vries (Kdv) equation (Kupershmidt 1985a). 

In this letter I show how to use one of the central objects in the theory of integrable 
systems-the Miura map-to find new oscillator representations for the Virasoro 
algebra and for the Neveu-Schwarz-Ramond ( NSR) superalgebra. The method used- 
localisation-can be applied to any Hamiltonian structure (e.g. that of classical or 
quantum fluids) and to any Hamiltonian map between a pair of Hamiltonian structures 
(e.g. for Clebsch maps associated with representations of functional Lie algebras (see 
Kupershmidt 1985b, ch VIII)). 

Recall (Kupershmidt and Wilson 1981) that the second Hamiltonian structure E 2  
of the Kdv equation 

U = B2( 6H/ 6 u )  B2 = ua + au + ca3 a = a/ax O # C € C  (1) 
and the Hamiltonian structure E of the Kdv equation, 
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are related by the Miura map 

U = au, - a2c-’u2/2 (3) 

which is Hamiltonian (= canonical). We now rewrite (1)-(3) in terms of the coefficients 
{U,} and {U,} of the Taylor series of U and U respectively. Denote by C, = C[u”] 
j E Z, and C, = C[ U’)] j E hi, the corresponding differential algebras, and let 

T: C,+ 6, C,+ e, T ( P )  = 1 T(P),x” (4) 

T(u”) = E  n,(a,y’(x”) T(u”’) = E  u,(a,y’(x‘) ( 5 )  

n C [ U , I X ~ , ~ E Z  and tu= n C [ U , ] X ~ , ~ E Z ,  

,€Z 

be the Taylor map, given on generators by the rule 

where 
m m 

k=-m k=-m 

are the completions of the corresponding polynomial rings (see Manin 1979, § 1.7.2.1). 
Denote 

= T( P)-l PE  C, or C, ( 6 )  

Using arguments from infinite-dimensional variational calculus, similar to those in 
Manin (1979 § I.7.22), one can show that 

P E  C,, n E Z 
aP 

au-,-, 
T( SP/ 6 ~ ) ,  =- (7) 

and analogously for P E C, (Manin works with the Fourier representation 

~ ( u ’ - j ) )  = E (2.rrin)4~,exp(2.rrinx) 
I l€Z 

instead of our Taylor representation; the analogue of formula (7) in the Fourier case 
is his Lemma 1.7.22: F(SP/Su),  = a l i / a U - , ,  6 = F(P),. Using (5)-(7), and denoting 

Ln = U - 2 + n  a n  = V - l + n  

we obtain from (1)-(3) 

L, = a ( n  - l)a, - a’c-’ C a,a,/2. 
I + m = n  

Thus, the Hamiltonian matrices of (9) and (10) are 

BZ,m = (n -m)L(n+m)+cn(n2- l ) S ( n , - m )  

B,, = -ca-2n6(,,,-,,. 

In the RHS of (12) we recognise the commutator [ L,, L,] of the Virasoro algebra, on 
the dual space of which lives the matrix BZ in (12). The map (11) is Hamiltonian 
between (12) and (13); this follows from the fact that (3) is Hamiltonian and the 
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abstract Hamiltonian formalism; alternatively, it is easy to check this fact by a direct 
calculation. Rewriting (12) and (13) once again in the form of the basic Poisson brackets 

we can interpret (15) as giving us a set of free oscillators {a,}  and (1 1) as providing 
us with an oscillator representation of the Virasoro algebra (14). In contrast to the 
known oscillator representations of the Virasoro algebra (Gervais and Neveu 1985), 
there are no ordered products involved in (1 1); in addition, the form of the expression 
(1 1) is uniform in n, i.e. it does not depend upon whether n = 0. 

We conclude by applying the same idea to the super Kdv situation (Kupershmidt 
1984). Here 

U = - 2 4  U, + U') + **,/4s cp=*,+u* (18) 

where cp and $ are new odd variables, B2 and B are (super) Hamiltonian matrices, 
and (18) is a (super) Hamiltonian map (this can be checked by using Kupershmidt 
(1985c Theorem A 2.40). Passing to the Taylor representation of (16)-( 18) (after we 
have checked that formula (7) remains true also for odd variables, which it does), we 
obtain 

i, = 1 ( n  - m)aB/aL, + cn(n2- i)afi /aL-,  + C ( - q +  n/2)rn+,aG/ar ,  ( 1 9 ~ )  

(19b) 

m s Z  s e l + Z  

Fp = 1 ( p  - m/2)rP+, , ,aB/a~, , ,  +2s 1 Lp+,afi/ar, - 2s(p2 -i)aB/ar-p 
.. 

d, = -(4c)-'nafi/aa-, W p  = 2saH/aw-, (20) 

L,=-2c (n-l)a,+Ca,a,-, +(4s)-'C(q+t)w,u,+l-, (21a) 

(21b) rp = (P - f ) w p  +I a m w p - m  

wp = *p-1/2 rp = ( P p - 3 / 2 .  (22) 

( ) 
where 

In the language of Poisson brackets, (19) and (20) can be rewritten in the form (14) 
and (15) plus, respectively, 

{ L ,  rq} = (-9 + n/2)rn+q {r, r,} = ~ S L ~ + ,  -2~(p'-:)6~,-, (23) 

{ a n ,  u p )  = 0 {up U,} = 2sSp,-,. (24) 

Formulae (14) and (23) define the NSR superalgebra, as expected. Formulae (24) show 
that the bosonic oscillators do not interact with the fermionic ones. Formulae (21) 
provide an oscillator representation of the NSR superalgebra. It is curious to note that 
physicists originally found the quadratic term in (21 b) by pure guesswork (see Schwarz 
1973 formula (4.6)). 
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